Questions Bank

Paper Name: Analytical Geometry and Applied Algebra

Course Name: B.A(Prog) 3rd Semester
1.Describe the graph of the equation $x^{2}-y^{2}-4 x+8 y-21=0$.
2. Sketch the ellipse, and label the foci, vertices, and ends of the minor axis:
i) $(x+3)^{2}+4(y-5)^{2}=16$
ii) $9 x^{2}+4 y^{2}-18 x+24 y+9=0$.
3. Find an equation for a hyperbola that satisfies the given conditions:

Vertices (0,6) and (6,6); foci 10 units apart.
4. Identify and sketch the curve $x y=1$.
5. Rotate the coordinate axes to remove the $x y$-term. Then identify the type of conic and sketch its graph
i) $x^{2}+4 x y-2 y^{2}-6=0$
ii) $x^{2}-10 \sqrt{3} x y+11 y^{2}+64=0$
6. Find the center and radius of the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y+8 z+17=0$.
7. Sketch the graph of $x^{2}+z^{2}=1$ in 3-space.
8. Describe the surface whose equation is given:
i) $x^{2}+y^{2}+z^{2}+10 x+4 y+2 z-19=0$
ii) $x^{2}+y^{2}+z^{2}-y=0$
9. Sketch the surface in 3 -space:
i) $y=\sin x$
ii) $y=e^{x}$
iii) $z=1-y^{2}$
d) $2 x+z=3$

Questions Bank

Paper Name: Analytical Geometry and Applied Algebra

Course Name: B.A(Prog) 3rd Semester
10. Find parametric equations for the line through P_{1} and P_{2} and also for the line segment joining those points:
a) $P_{1}(3,-2), P_{2}(5,1)$
b) $P_{1}(5,-2,1), P_{2}(2,4,2)$
11. The line that is tangent to the parabola $y=x^{2}$ at the point $(-2,4)$.
12. Find an equation of the plane through the points $P_{1}(1,2,-1), P_{2}(2,3,1)$, and $P_{3}(3,-1,2)$.
13. Determine whether the line $x=3+8 t, y=4+5 t, z=-3-t$ is parallel to the plane $x-$ $3 y+5 z=12$.
14. Determine whether the line and plane are parallel, per- pendicular, or neither
i) $x=4+2 t, y=-t, z=-1-4 t ; 3 x+2 y+z-7=0$
ii) $x=t, y=2 t, z=3 t ; x-y+2 z=5$
iii) $x=-1+2 t, y=4+t, z=1-t ; 4 x+2 y-2 z=7$
15. Find the distance between the given parallel planes :

$$
\begin{gathered}
-2 x+y+z=0 \\
6 x-3 y-3 z-5=0
\end{gathered}
$$

16. Find a vector v having opposite direction as the vector from the point $P(1,0,-6)$ to $Q(-3,1,1)$ with $\|v\|=5$.
17.Using vector , find the area of triangle with vertices $A(2,2,0), B(-1,0,2)$ and $C(0,4,3)$.
18.Let $\mathrm{u}=i-3 j+2 k, \mathrm{v}=i+j$ and $\mathrm{w}=2 i+2 j-4 k$. Find the volume of the parallelepiped with adjacent edges u, v and w.
19.Prove that $u . v=\frac{1}{4}\left(\|u+v\|^{2}-\|u-v\|^{2}\right)$.
20.Given three pitchers: 8,5 and 3 liters capacity. Only 8 liter pitcher is full. Make at least one of them contain exactly 4 liter of water with the minimum number of water transfers.

Questions Bank

Paper Name: Analytical Geometry and Applied Algebra

Course Name: B.A(Prog) 3rd Semester
21.Define Latin square. Construct a Latin square of order 5 on $\left\{e, e^{2}, e^{3}, e^{4}, e^{5}\right\}$.
22.Find a maximum independent set of vertices for the following graph. What is the minimum number of independent set needed to cover all the vertices ?

23.Find a matching or explain why none exists for the following graph:

24. Find the direction cosines of v. Then use the direction cosines to approximate the direction angles to the nearest degree
i) $\mathrm{v}=i+j-k$
ii) $v=2 i-2 j+k$
25.Find the distance between the skew lines:
$L_{1}: x=1+7 t \quad y=3+t \quad z=5-3 t,-\infty<t<\infty$
$L_{2}: x=4-t \quad y=6 \quad z=7+2 t,-\infty<t<\infty$

